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ON THE EXISTENCE OF PERIODIC SOLUTIONS IN THE NONLINEAR 
TUMORS OF OSCILLATIONS OF N~NS~ALLO~ REISSNER SHELLS OF 

REVULUTION, ACCOUNTING FOR DECAY* 

S.A. SOLOP 

The problem of nonlinear oscillations of a homogeneousi isotropic ~~nshal~#~~~~ssn~~ 
shell of revolution af constant thickness , with decay and periodicity of the appfica- 
tion of the external load, is considered. The proof of existence of a generalized 
periodic solution and of convergence of the Bubnov- GaLerkin method is given. 
The problem of existence of periodic solutions of nonlinear equations of the theory 
of plates and shallow shells with decay, were studied in /1,2/. 

1, Basic relations, We consider a peripherally closed, homogeneous isotropic non- 
shallow shell of revolution described by the relations 

aI = n,+ (~'03s d +- &sin @) f cos@ - $) - 1, eE = f;i-'a 
v = c+-* (w'eos 8 - II' sin*) - sin (8 -Is,) 
x1 = uII-l (a,' - W), x2 = ro-1 (sin 6, - sin 6) 

T, =n B (4 + %I, M, = n (x1 $ VXJ, Q = cy (1 z! 21. 
B = (1 - v2)-' Eh, D = 32-l (1 - v2)--1 Ehs, C = 2-I(1 + v)-IEla 

Here a prime denotes a derivative with respect to the spatial coordinate Ij* The remaining 
symbols are those given in /3,4/, 

The differential equations of oscillation of the shell with decay, can be written in the 
form 

'+I !-FUI +.&I= P (1.1) 

where a>0 Is a constant, P is a known vector function of time, the subscript t denotes dii- 
ferentiation with respect to t and A is a nonlinear operator not depending explicitly on t. 

Let the shell be acted upon by time-periodic mass forces P with period o. The problem 
consists of finding a vector ~(5. t)-= (u, LL‘. @) (B< << b, - =<t<-i- m) satisfying the equatPons 
(1.1) and conditions 

U (a,'$) = II (b, t) = 0 

11 (E, 1 -I- 0) = u (5, 0, Ut (5, f -i- W) = l&t tt, t) 

2 L Basic ~s~~~P~~~~~. Let the following conditions hold: 

(1.2) 
(1.3) 

14 the middle surface of the sf-iell represents a surface of revolution contained between 
two parallel lines $= 4 and E= 8; the homemorphic mapping of its meridian on the segment 
[n, ?J) is produced by the function r E C(*) (a, ?I); 

2) the following inequalities hold in the domain of variation of the parameters 5 (O<a<: 

E<b<w): 
0 <I '"1 < a,-%-,+ B<m*<oo, O<V<P 

where ~1~ and nrp are certain constants; 
3) the units of measurement of mass 

chosen such that p= 1, k= 1. 

Basic SPaces, Space H (Q, b) is a 
of vector functions u = (u. w,*) f (?"(a, a) 
norm corresponding to the scalar product 

density p and the linear dimensions of the shell are 

Hilbert space obtained by the closure of the set c!, 
satisfying the conditions (1.21 and (L.3)) in the 

Space X, is a HPlbert space obtained by the closure of the set Ca in the n#rm corresponding to 
the scalar product 

(u(').u(3~)1 = s" [ uwuw ;. l”wJ*) i* fp(+‘+p’) q$., @ 

Let Ca be a set of elements u(E, 1) d&ending on the parameter f and such, that UEC~, u~EX~ 
for any -W<f<mj- =( with finite norms *i) 

a=+ /Ill /!I' fit=+ iiU,&> s 
J/u C"dl 

The space x,(0,0) is the closure of the set C, in tge norm corresponding to the scalar product 

*Prikl.~atem.~~khan.,44,~o.l,l%8-192,l~%o 

134 



Existence of periodic solutions in the nonlinear theory of oscillations 135 

(p . @)) a, o, o = j [(u+& + (u(1).u(2)),1] dt 

The following lemmas are proved as in /5/.' 

Lemma 1 , H (a, b) represents the space W = B$'u) (a. b) x Wi”’ (a, b) x $“lJ (a, b) and the norms 
of H(a, b) and Ware equivalent on If(a, b). 

Lemma 2, A complete system of vectors {x,,,(x Imr Ie,,,,~,,,)) exists in the space H (a, b) . 
The system can be regarded as orthogonal in H(a, b), orthonomnal in X1 and such, that of 

(xip.xip)I = 1, then (xjp.xjp)l= 0, i, j = 1, 2, 3, P = 1,. . .( *S i# i. 

Lf3illKl 3, X,(0, m) is a separable Hilbert space and a subset of elements of C, , which 
can be represented in the form of finite sums Cdh (t)w (where dh. (t) E C@)(O, W) and satisfy (1.3) 
and (Pk = H to> b)) densely everywhere in it. 

Lemma 4, The vector-function ut regarded as an element of X1 and u as an element of 
H(a, b) are both functions of t,o<t<o, continuous almost everywhere. 

3, Generalized solution and solvability of the problem, Let the conditions 

4) F (t + 0) = F (0, marl II F II1 < c-3 (F = 0 Ir 12, Fd) 
hold. Equations of motion of the shell can be written, according to the Hamilton-Ostrogradskii 
principle, in the form 

~{-(ul.plul),i b E(IQ.~u)~ + 1 (T,6e,+ T&s t QWW&-i- 
0 a 

.11,6xJ a,,r,,d< - (F&L),} dt = 0, 6u = (6~ OWL’, 66) 

where 6~ denotes a possible displacement. 

Definition, Vector function u(E, t) satisfying the conditions that: 

a) u(E,t+0)=~(4~t), u~(~,~+o)=u~(s,~); 
b) mart IIutlL1 ma=, IIu(lEl IIul~,,+ are finite; 
c) the Hamilton-Ostrogradskii equations hold for any 6~ E H (n, b), strongly differentia- 

ble in t, shall be called the generalized, o-periodic solution of the problem (l.l)- (1.3). 
Using the accepted method of variational calculus, we can reduce the problem of obtaining 

a generalized, o-periodic solution, to that of determining the solvability of the operator 
equation (1.1) in the space X,(0, 0). Bubnov-Galerkin method can be used to obtain the general- 
ized solution in approximate form. Ke construct a sequence {u,) of the form un= ql(t)X1+...+ 

Pn (t) L where x,,, are defined in Lemma 2. The vector (9, (I), q,,i (1)) = h (t). . . . . qn (t), qlr (t), . ., qnt (t)) 

is determined as a periodic solution of the following nonlinear system of ordinary differential 
equations: 

(11 ,,(l.X,)l im ~&.X,)I i- I,,-(F.X,,,k =O (3.1) 

I,,,,, = i (T&n,, I- ~J%,> ~'- Q&,,, + ~'fl,&,n, ;- ~f.&&)wo df , (m=l....,n) 

a 

Here T,,. . . ., Mzn are obtained by replacing u by u,; the expressions 6e1,,,...,6%,,, , with the 
hypotheses of /3/ taken into account, have the form 

Theorem, Let the conditions l)-4) hold, and let (x,} be a system of vector functions 
defined in Lemma 2. Then 

a) system of equations (3.1) has at least one o-periodic solution for any value of II; 
b) the set of approximations (u,) is weakly compact in X,(0, 0); 
c) every weak limit of (~~1 in x,(0,0) represents a generalized, o-periodic solution of 

the problem (l-l)- (1.3). 
The proof of the theorem is centered on confirming the dissipative character /6/ of the 

equations (3.1). The equations of the Bubnov- Galerkin method in the theory of nonshallow 
shells of revolution differ from the corresponding equations of the theory of thin plates /l/ 
and shallow shells /2/ in the following aspects. Let the following positive-definite functional 
of potential energy of the shell be given on the space H (a, b) : 

In the theory of plates,the form @ can be written in terms of qm(t) as a sum Qn= %+ 
ma,, of the forms of second and fourth degree. In the theory of shallow shells we have 
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0, = (I),,, -;- w,, -t (bI,,. where Cl),,, is a third degree functional in q,,,(t). In the theoryof non- 
shallow shells of revolution the functional (I),, is no longer a sum of homogeneous functionals. 

To prove the theorem we multiply the equations (3.1) by #I,,,~ (/J , sum over 11, from 1 to /J, 
and add the resulting expressions 

;;; (2 'l111,,,!,? II,,,) iF.O,,,), -F / uni /I12 
Next we introduce the function 

11 

l.,, (1) 1’ iq,, (t). (I,,, (1)) 2-l ij unl ii,2 ‘Dn ~ (( 2 bJnl.~,,Jl @;X,h p i (Un.X,>,llS 
>,!i;, r,i=* 

and impose the following constraints on the constants ai0 and b>O: 
2-1 - aE,? ;. 0, p - 2-++-2 > 0 

Taking into account the Young's inequality with constant vl* we can show the suffici- 
ency of the above inequalities for the positive definiteness of I,?? (0. Using (3.1), we obtain 
the following expression for the derivative VW (0 : 

II n 

Let a~= 28. The Young's inequalities with czz and E: yield 

Let a = E - 2-1~~2 - 2a > 0, b = ~-IQ-? + 2-l%-?; and let S(1, 0) be a sphere of unit radius in the space 

lI(n,b) with its center at the zero: /IuII~= 1. Projecting the sphere S(l,O) with help of the 
mapping u = RQ,, w = R2m,, d = RZf, where R > 0 is a constant, we find the ellipsoid C (R,O) in the 

space H (a, b) . When the constant R>I is fixed, the ellipsoid becomes a boundary of a conn- 

ected convex region containing a unit sphere with center at the zero of the space H (a, b). 

Lemma 5, Let C(R,O) be an ellipsoid belonging to the space ~(a,b), of sufficiently 
large radius R, independent of 1. If an element u,(t) belonging to the space ~(a, b) arrives, 
for every fixed - u<t<+ m and all ri, at some value t=f* at the ellipsoid C (R, 0) of 

sufficiently large radius, then the following inequality holds: 

(D," (t*) > bpR2 - &R’ - dJ2 -- 6,R - Bo (3.2) 

where 6,, . ., b, are constants independent of II, (t*). 

To prove Lemma 5, we assume that the positive definiteness of the form 

implies the positive definiteness of the form 

2m:, (& E ai, 
n / Y,’ _I+ %in t &) -\c yn 

Here and henceforth mi>O are constants independent of n. Let us write the inequalities 

(3.3) 

a),&m, i (Egn E& :Inl xinmi ~gJW”~SZ m, v,n- J2,,J 

J1,= [ Ia,' (u 82 : j(’ J 1 6 ‘2) n 7, n r;%,21 a,r& 
(1 
h 

From the properties of the space ~f(a, b) and conditions 1) and 2), it follows that 

m5 II un :lHf sd Jln sA m6 II un llH2, J:* -< 9 II u, IIH 

The functional 0,,O is transformed thus 

and this yields, with the help of elementary inequalities, 

(3.4) 

(3.5) 
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Theorems of imbedding the space H(a, b) in the Hijlder space H=(a, b) for a<2-' /7/ and the 
inequalities (3.3)- (3.5) together yield the inequality 

'~l,o~~R~~~1,//11*-~~~!l~,IIH-~-'~s21i~,11~*- 12 lrlnl ~IQ,I(~+l~,l)+ i a 
l JfIfL l I %-%o’ l + I ‘Mln l l cl-’ I (2 L I 6, I)1 wo de 

Choosing E,~ so that m,-Z%,a)_m,,>o (which is always possible), we can obtain, on the ellip- 
soid c (R,O) I the estimate (3.2) sought. This proves Lemma 5. Further arguments needed to 
prove the theorem follow those given in /2/. 

Note, If e.g. we choose the constants Ed', EJ', tl, fi, corresponding to the inequalities 

CL < 4-18, E-1 < e,a < 4E_', p <WE*, Ei2 < E, GLB = 28 

then all restrictions imposed on them will hold. 
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