ON THE EXISTENCE OF PERIODIC SOLUTIONS IN THE NONLINEAR THEORY OF OSCILLATIONS OF NONSHALLOW REISSNER SHELLS OF revolution, accounting for decay *

S.A. SOLOP

The problem of nonlinear oscillations of a homogeneous, isotropic nonshallow Reissner shell of revolution of constant thickness, with decay and periodicity of the application of the external load, is considered. The proof of existence of a generalized periodic solution and of convergence of the Bubnov-Galerkin method is given. The problem of existence of periodic solutions of nonlinear equations of the theory of plates and shallow shells with decay, were studied in $/ 1,2 /$.

1. Basic relations, we consider a peripherally closed, homogeneous isotropic nonshallow shell of revolution described by the relations

$$
\begin{aligned}
& \varepsilon_{1}=\alpha_{0}^{-1}\left(u^{\prime} \cos \theta+w^{2} \sin \theta\right)+\cos \left(\theta-\theta_{0}\right)-1, \quad \varepsilon_{2}=r_{0}^{-1} u \\
& \gamma=\alpha_{10}^{-1}\left(w^{\prime} \cos \theta-u^{\prime} \sin \theta\right)-\sin \left(\theta-\theta_{0}\right) \\
& x_{1}=\alpha_{0}^{-1}\left(\vartheta_{0}^{\prime}-\theta^{\prime}\right), \quad x_{2}=r_{0}^{-1}\left(\sin \vartheta_{0}-\sin \theta\right) \\
& T_{1}=B\left(\varepsilon_{1}+v \varepsilon_{2}\right), \quad M_{1}=D\left(x_{1}+v x_{2}\right), \quad Q=C \gamma \quad(1 \rightleftarrows 2), \\
& R=\left(1-v^{2}\right)^{-1} E h, \quad D=12^{-1}\left(1-v^{2}\right)^{-1} E h^{3}, \quad C=2^{-1}(1+v)^{-1} E h_{1}
\end{aligned}
$$

Here a prime denotes a dexivative with respect to the spatial coordinate g. The remaining symbols are those given in $/ 3,4 /$.

The differential equations of oscillation of the shell with decay, can be written in the form

$$
\begin{equation*}
\mathbf{u}_{n}-\varepsilon u_{t}+\mathbf{A u}=\mathbf{F} \tag{1.1}
\end{equation*}
$$

where $x>0$ is a constant, F is a known vector function of time, the subscript t denotes differentiation with respect to t and A is a nondinear operator not depending explicitly on t.

Let the shell be acted upon by time-periodic mass forces r with period w. The problem consists of finding a vectox $u(\xi, t)=(u, u, \theta)(a \leqslant \xi \leqslant b,-\infty<t<+\infty)$ satisfying the equations (1.1) and conditions

$$
\begin{align*}
& \mathbf{u}(a, t)=\mathbf{u}(b, t)=0 \tag{1.2}\\
& \mathbf{u}(\xi, t+\omega)=\mathbf{v}(\xi, t), \quad \mathbf{u}_{t}(\xi, t+\omega)=\mathbf{u},(\xi, t) \tag{1.3}
\end{align*}
$$

2. Basic asSumptions, Let the following conditions hold:
1) the midale surface of the shell represents a suxface of revolution contained between two parallel lines $\xi=a$ and $\xi=b$, the homemorphic mapping of its meridian on the secment $[a, b]$ is produced by the function $r \in C^{(2)}(a, b)$;
2) the following inequalities hold in the domain of variation of the parameters $\xi(0<a \leqslant$ $\xi \leqslant b<\infty$):

$$
0<m_{1} \leqslant \alpha_{0}^{-3} r_{0}, \quad E \leqslant m_{2}<\infty, \quad 0<v<2^{-1}
$$

where m_{1} and m_{2} are certain constants;
3) the units of measurement of mass density ρ and the linear dimensions of the shell are chosen such that $\rho=1, h=1$.

Bosic Spaces. space $I(a, b)$ is a Hilbert space obtained by the closure of the set C_{x} of vector functions $u=(a, w, v) \in C^{(1)}(a, b)$ satisfying the conditions (1.2) and (1.3), in the norm corresponding to the scalar product

$$
\left(\mathbf{u}^{(1)} \cdot u^{(2)}\right)_{n}=\int_{G}^{b}\left(u^{\prime(1)} u^{(2)}+w^{(2)} w^{\prime}(2)+母^{(1)} \vartheta^{(2)}\right) a_{0} r_{0} d \xi_{s}
$$

Space X_{1} is a Finbert space obtained by the closure of the set C_{1} in the norm corresponding to the scalar product

$$
\left(\mathbf{u}^{(1)} \cdot \mathbf{u}^{(2)}\right)_{t}=\int_{a}^{b}\left(u^{(1)} u^{(2)} \cdot w^{(1)} w^{(2)}+12^{-1} g^{(1)} \boldsymbol{g}^{(2)}\right) a_{0} r_{0} d \xi_{0}
$$

Let C_{2} be a set of elements $u(\xi, t)$ depending on the parameter t and such, that $u_{i} \in C_{2}, u_{t} \in X_{1}$ for any $-\infty<t<+\infty$, with finite norms

$$
\left.\max _{t}\left\|\operatorname{man}_{1}, \max _{i}\right\| u_{t}\right\}, \int_{0}^{i p}\|n\|_{H^{2}} d t
$$

The space $X_{2}(0, \omega)$ is the closure of the set c_{2} in the norm corresponding to the scalar product

[^0]$$
\left(\mathbf{u}^{(1)} \cdot \mathbf{u}^{(2)}\right)_{2,0, \omega}=\int_{0}^{\omega}\left[\left(u_{i}^{(1)} \cdot \mathbf{u}_{t}^{(2)}\right)_{\mathbf{1}}+\left(\mathbf{u}^{(2)} \cdot \mathbf{u}^{(2)}\right)_{H}\right] d t
$$

The following lemmas are proved as in /5/.
Lemma $1, H(a, b)$ represents the space $W=W_{2}^{0(1)}(a, b) \times W_{2}^{0(1)}(a, b) \times W_{2}^{0(1)}(a, b)$ and the norms of $H(a, b)$ and W are equivalent on $H(a, b)$.

Lemma 2. A complete system of vectors $\left\{\chi_{m}\left(\chi_{1 m}, \chi_{2 m}, \chi_{s m}\right)\right\}$ exists in the space $H(a, b)$. The system can be regarded as orthogonal in $H(a, b)$, orthonormal in X_{1} and such, that of $\left(\chi_{i p} \cdot \chi_{i p}\right)_{1}=1$, then $\left(\chi_{j p} \cdot \chi_{j p}\right)_{1}=0, i, j=1,2,3, p=1, \ldots, n, i \neq i$.

Lemma 3, $X_{2}(0,0)$ is a separable Hilbert space and a subset of elements of c_{2}, which can be represented in the form of finite sums $\Sigma d_{k}(t) \varphi_{k}$ (where $d_{k}(t) \in C^{(2)}(0, \omega)$ and satisfy (1.3) and $\boldsymbol{\varphi}_{k} \in H(a, b)$) densely everywhere in it.

Lemma 4, The vector-function u_{t} regarded as an element of X_{1} and u as an element of $H(a, b)$ are both functions of $t, 0 \leqslant t \leqslant \omega$, continuous almost everywhere.
3. Generalized solution and solvability of the problem. Let the conditions 4)
$\mathbf{F}(t+\omega)=\mathbf{F}(t), \max _{t}\|\mathbf{F}\|_{1}<\infty,\left(\mathbf{F}=\left(I_{1}, I_{2}, F_{3}\right)\right)$
hold. Equations of motion of the shell can be written, according to the Hamilton-Ostrogradskii principle, in the form

$$
\begin{aligned}
& \int_{0}^{\omega}\left\{-\left(\mathbf{u}_{t} \cdot \delta \mathbf{u}_{t}\right)_{1}+\varepsilon\left(\mathbf{u}_{t} \cdot \delta \mathbf{u}\right)_{1}+\int_{a}^{b}\left(T_{1} \delta \varepsilon_{1}+T_{2} \delta \varepsilon_{2}+Q \delta \gamma+M_{1} \delta x_{1}-1-\right.\right. \\
& \left.\left.M_{2} \delta x_{2}\right) \alpha_{0} r_{0} d \xi-(\mathbf{F} \cdot \delta u)_{1}\right\} d t=0, \quad \delta \mathbf{u}=(\delta u, \delta w, \delta \theta)
\end{aligned}
$$

where δu denotes a possible displacement.
Definition, vector function $\mathbf{u}(\xi, t)$ satisfying the conditions that:
a) $\mathbf{u}(\xi, t+\omega)=\mathbf{u}(\xi, t), \mathbf{u}_{1}(\xi, t+\omega)=\mathbf{u}_{\mathbf{t}}(\xi, t)$;
b) $\max _{i}\left\|u_{d}\right\|_{1}, \max _{i}\|u\|_{H},\|u\|_{2,0, \omega}$ are finite;
c) the Hamilton-Ostrogradskii equations hold for any $\delta u \in H(a, b)$, strongly differentiable in t, shall be called the generalized, ω-periodic solution of the problem (1.1)-(1.3).

Using the accepted method of variational calculus, we can reduce the problem of obtaining a generalized, ω-periodic solution, to that of determining the solvability of the operator equation (1.1) in the space $X_{2}(0, \omega)$. Bubnov-Galerkin method can be used to obtain the generalized solution in approximate form. We construct a sequence $\left\{\mathbf{u}_{n}\right\}$ of the form $u_{n}=q_{1}(t) \chi_{1}+\ldots+$ $q_{n}(t) \chi_{n}$, where χ_{m} are defined in Lemma 2. The vector $\left(\mathbf{q}_{n}(t), \mathbf{q}_{n!}(t)\right)=\left(q_{1}(t), \ldots, q_{n}(t), q_{1 t}(t), \ldots, q_{n t}(t)\right)$ is determined as a periodic solution of the following nonlinear system of ordinary differential equations:

$$
\begin{align*}
& \left(\mathbf{u}_{n t l} \cdot \chi_{m}\right)_{1}-\boldsymbol{E}\left(\mathbf{u}_{n t} \cdot \chi_{m}\right)+I_{n m}-\left(\mathbf{F} \cdot \chi_{m}\right)_{1}=0 \tag{3.1}\\
& I_{n m}=\int_{a}^{b}\left(T_{1 n} \delta \varepsilon_{1 m}+T_{2 n} \delta \varepsilon_{2 m}-Q_{n} \delta \gamma_{m}+M_{1 n} \delta x_{1 m} \div M_{\mathbf{a n}} \delta x_{2 m}\right) \alpha_{0} r_{0} d \xi, \quad(m=1 \ldots \ldots n)
\end{align*}
$$

Here $T_{1 n}, \ldots, M_{2 n}$ are obtained by replacing u by u_{n}; the expressions $\delta \varepsilon_{1 m}, \ldots, \delta x_{2 m}$, with the hypotheses of $/ 3 /$ taken into account, have the form

$$
\begin{aligned}
& \delta \varepsilon_{1 m}=\alpha_{0}^{-1} \chi_{1 m}^{\prime} \cos \vartheta_{n}+\alpha_{0}^{-1} \chi_{2 m}^{\prime} \sin \vartheta_{n}, \quad \delta \varepsilon_{2 m}=r_{0}^{-1} \chi_{1 m}, \quad \delta \chi_{1 m}=\alpha_{0}^{-1} \chi_{3 m}^{\prime} \\
& \delta \gamma_{m}=\alpha_{0}^{-1} \chi_{2 m}^{\prime} \cos \vartheta_{n}-\alpha_{0}^{-1} \chi_{1 m}^{\prime} \sin \vartheta_{n}-\chi_{3 m}, \quad \delta x_{2 m}=-r_{0}^{-1} \chi_{j, m} \cos \vartheta_{n}
\end{aligned}
$$

Theorem, Let the conditions 1) - 4) hold, and let $\left\{\chi_{m}\right\}$ be a system of vector functions defined in Lemma 2. Then
a) system of equations (3.1) has at least one w-periodic solution for any value of n;
b) the set of approximations $\left\{u_{n}\right\}$ is weakly compact in $X_{2}(0, \omega)$;
c) every weak limit of $\left\{u_{n}\right\}$ in $X_{2}(0, \omega)$ represents a generalized, w-periodic solution of the problem (1.1)-(1.3).

The proof of the theorem is centered on confirming the dissipative character /6/ of the equations (3.1). The equations of the Bubnov-Galerkin method in the theory of nonshallow shells of revolution differ from the corresponding equations of the theory of thin plates /l/ and shallow shells /2/ in the following aspects. Let the following positive-definite functional of potential energy of the shell be given on the space $H(a, b)$:

$$
\Phi_{n}=\Phi\left(\mathbf{u}_{n}\right)=\frac{1}{2} \int_{a}^{b}\left(T_{1} \varepsilon_{1}+T_{2} \varepsilon_{2}+Q V+M_{1} \alpha_{1}+M_{2} \alpha_{2}\right) a_{0} r_{0} d \xi
$$

In the theory of plates, the form Φ can be written in terms of $q_{m}(t)$ as a sum $\Phi_{n}=\Phi_{2 n}+$ $\Phi_{4 n}$ of the forms of second and fourth degree. In the theory of shallow shells we have
$\varphi_{n}=\phi_{2 n}-i \varphi_{n}+\varphi_{1 n}$, where Φ_{m} is a third degree functional in $q_{m}(t)$. In the theory of nonshallow shells of revolution the functional I_{n} is no longer a sum of homogeneous functionals. To prove the theorem we multiply the equations (3.1) by $4, m(1)$, sum over m from 1 to n, and add the resulting expressions

Next we introduce the function

$$
Y_{n}(t)-V\left(\mathbf{q}_{n}(t), \mathbf{q}_{n t}(t)\right) \quad 2^{-1}\left\|u_{n!}\right\|_{1}^{2} \cdots \mathbf{q}_{n} \cdot \alpha \sum_{m=1}^{n}\left(\mathbf{u}_{n t} \cdot \chi_{m}\right)_{1}\left(\mathbf{u}_{n} \cdot \chi_{m}\right)_{1} \beta \sum_{m=1}^{n}\left(\mathbf{u}_{n} \cdot \chi_{m}\right)_{1}^{2}
$$

and impose the following constraints on the constants $\alpha>0$ and $\beta>0$:

$$
2^{-1}-\alpha \varepsilon_{1}^{2}>0, \beta-2^{-1} \alpha \varepsilon_{1}^{-2}>0
$$

Taking into account the Young's inequality with constant $\varepsilon_{1}{ }^{2}$ we can show the sufficiency of the above inequalities for the positive definiteness of $V_{n}(t)$. Using (3.1), we obtain the following expression for the derivative $V_{n t}(t)$:

$$
\begin{aligned}
& V_{n t}(t)=\left(\mathbf{F} \cdot \mathbf{u}_{n t}\right\}_{1}-\varepsilon \| \mathbf{u}_{n t} H_{1}^{2}+2 \beta \sum_{n=1}^{n}\left(\mathbf{u}_{n t} \cdot \chi_{m}\right)_{1}\left(\mathbf{u}_{n} \cdot \chi_{m}\right)_{1} \cdot \alpha \sum_{n=1}^{n}\left(\mathbf{u}_{n t} \cdot \chi_{m}\right)^{2}+ \\
& \quad \alpha \sum_{m=1}^{n}\left(\mathbf{u}_{n} \cdot \chi_{m}\right)\left\{-\varepsilon\left(\mathbf{u}_{n t} \cdot \chi_{m}\right)_{1}-I_{n m}+\left(\mathbf{F} \cdot \chi_{m}\right)_{1}\right\}
\end{aligned}
$$

Let $\alpha \varepsilon=2 \beta$. The Young's inequalities with $\varepsilon_{2}{ }^{2}$ and ε_{3}^{2} yield

$$
\begin{aligned}
& V_{n t}(t) \leqslant-a\left\|\mathbf{u}_{n t}\right\|_{\mathbf{1}}^{2}-b \mid \mathbf{F} \|_{1}^{2}-a \Phi_{n}^{\circ} \\
& \Phi_{\mathfrak{n}}^{\circ} \cdot\left(\mathrm{D}_{n}^{\circ}(t)=\sum_{m=1}^{n}\left(\mathbf{u}_{n} \cdot \chi_{m}\right)_{\mathbf{1}} I_{n m}-2^{-1} \varepsilon_{3}{ }^{2}\left\|\mathbf{u}_{n}\right\|_{1}^{2}\right.
\end{aligned}
$$

Let $a=\varepsilon-2^{-1} \varepsilon_{2}{ }^{2}-2 \alpha>0, b=2^{-1} \varepsilon_{2}{ }^{-2}+2^{-1} \varepsilon_{3}{ }^{-2}$; and let $S(1,0)$ be a sphere of unit radius in the space $I(a, b)$ with its center at the zero: $\|u\|_{H}=1$. Projecting the sphere $S(1,0)$ with help of the mapping $u=R^{2} u_{1}, w=R^{2} w_{1}, \vartheta=R \vartheta_{1}$ where $R>0$ is a constant, we find the ellipsoid $C(R, 0)$ in the space $H(a, b)$. When the constant $R>1$ is fixed, the ellipsoid becomes a boundary of a connected convex region containing a unit sphere with center at the zero of the space $H(a, b)$.

Lemma 5. Let $C(R, 0)$ be an ellipsoid belonging to the space $H(a, b)$, of sufficiently large radius R, independent of t. If an element $u_{n}(t)$ belonging to the space $H(a, b)$ arrives, for every fixed - $-\infty<t<+\infty$ and all n, at some value $t=t^{*}$ at the ellipsoid $C(R, 0)$ of sufficiently large radius, then the following inequality holds:

$$
\begin{equation*}
\Phi_{n}^{\circ}\left(t^{*}\right) \geqslant \delta_{4} R^{4}-\delta_{3} R^{3}-\delta_{2} R^{2}-\delta_{1} R-\delta_{0} \tag{3.2}
\end{equation*}
$$

where $\delta_{0}, \ldots, \delta_{4}$ are constants independent of $\mathbf{u}_{n}\left(t^{*}\right)$.
To prove Lemma 5, we assume that the positive definiteness of the form

$$
\Psi_{n}=B\left(\varepsilon_{1 n}^{2} \vdots \varepsilon_{2 n}^{2}+2 v \varepsilon_{1 n} \varepsilon_{2 n}\right)+C \gamma_{n}^{2}-D\left(x_{1 n}^{2}+x_{2 n}^{2}: 2 v \kappa_{1 n} \kappa_{2 n}\right)
$$

implies the positive definiteness of the form

$$
2 m_{3}\left(\varepsilon_{1 n}^{2}+\varepsilon_{2 n}^{2}+\gamma_{n}^{2}+x_{1 n}^{2}+x_{2 n}^{2}\right) \leqslant \Psi_{n}
$$

Here and henceforth $m_{i}>0$ are constants independent of n. Let us write the inequalities

$$
\begin{align*}
& \Phi_{n} \geqslant m_{3} \int_{a}^{b}\left(\varepsilon_{1 n}^{2}: \varepsilon_{2 n}^{2} \quad v_{n}^{2}: x_{1 n}^{2}+x_{2 n}^{2}\right) \alpha_{0} r_{0} d \xi \geqslant m_{4}\left(J_{1 n}-J_{2 n}\right) \tag{3.3}\\
& J_{1 n}=\int_{\alpha}^{h}\left[\alpha_{0}^{-2}\left(u_{n}^{\prime 2}: w_{n}^{\prime 2}, \vartheta_{n}^{\prime 2}\right) \vdots r_{0}^{-2} u_{n}^{2}\right] \alpha_{0} r_{0} d \xi \\
& J_{2 n}=\int_{a}^{b}\left[3 a_{0}^{-1}\left(\left|u_{n}^{\prime}\right|+\left|w_{n}^{\prime}\right|\right) \div 2 a_{0}^{-1}\left|\hat{\theta}_{0}{ }^{\prime} \hat{v}_{n}{ }^{\prime}\right|\right] \alpha_{0} r_{0} d \varepsilon
\end{align*}
$$

From the properties of the space $H(a, b)$ and conditions 1) and 2), it follows that

$$
\begin{equation*}
m_{\mathbf{5}}\left\|\mathbf{u}_{n}\right\|_{H}^{2} \leqslant J_{1 n} \leqslant m_{6}\left\|\mathbf{u}_{n}\right\|_{H}^{2}, \quad J_{2_{n}} \leqslant m_{7}\left\|\mathbf{u}_{n}\right\|_{H} \tag{3.4}
\end{equation*}
$$

The functional $\Phi_{n}{ }^{\circ}$ is transformed thus

$$
\begin{gathered}
\mathscr{D}_{n}^{0}=\int_{n}^{b}\left\{T_{1 n}\left[\varepsilon_{1 n} \cdot 1-\cos \left(\vartheta_{n}-\vartheta_{0}\right)\right]+T_{2 n} \varepsilon_{2 n}: Q_{n} \mid \vartheta_{n} \cdots \sin \left(\vartheta_{n}-\vartheta_{0}\right)-\right. \\
\left.\left.\vartheta_{n}\right]+M_{1 n}\left(\kappa_{1 n}-\dot{1}_{0}^{-1} \vartheta_{0}\right) \quad M_{2 n}\left(-r_{0}^{-1} \vartheta_{n} \cos \vartheta_{n}\right)\right\} \alpha_{0} r_{0} d \xi-2^{-1} \varepsilon_{3}^{2}\left\|u_{n}\right\|_{1}^{2}
\end{gathered}
$$

and this yields, with the help of elementary inequalities,

$$
\begin{equation*}
\mathrm{U}_{n}^{\circ} \geqslant 2 \mathrm{\Phi}_{n}-2^{-1} \varepsilon_{3}{ }^{2}\left\|\mathbf{u}_{n}\right\|_{1}^{2}-\int_{i}^{1}\left[2\left|T_{1_{n}}\right|+\left|Q_{n}\right|\left(1+\left|\vartheta_{n}\right|\right)\left|-\left|M_{1 n}\right|\right| \alpha_{0}^{-1}{\theta_{0}}^{\prime}\left|+\left|M_{2 n}\right|\right| r_{0}^{-1} \mid\left(2 ; \mid \vartheta_{n}\right)\right] \alpha_{0} r_{0} d_{3} \tag{3.5}
\end{equation*}
$$

Theorems of imbedding the space $H(a, b)$ in the Holder space $H^{\alpha}(a, b)$ for $\alpha<2^{-1} / 7 /$ and the inequalities (3.3)-(3.5) together yield the inequality

$$
\begin{aligned}
& \Phi_{n}{ }^{\circ} \geqslant m_{8}\left\|\mathbf{u}_{n}\right\|_{H}^{2}-m_{9}\left\|\mathbf{u}_{n}\right\|_{H}-2^{-1} \varepsilon_{3_{3}}\left\|\mathbf{u}_{n}\right\|_{1}^{2}-\int_{a}^{b}\left[2\left|T_{1 n}\right|+\left|Q_{n}\right|\left(1+\left|\hat{\theta}_{n}\right|\right)+\right. \\
& \left.\left|M_{1_{n}}\right|\left|a_{0}{ }^{-1} \boldsymbol{\vartheta}_{0}{ }^{\prime}\right|+\left|M_{2 n}\right|\left|r_{0}^{-1}\right|\left(2 \div\left|\vartheta_{n}\right|\right)\right] \alpha_{0} r_{0} d \xi
\end{aligned}
$$

Choosing $\varepsilon_{a^{2}}$ so that $m_{d}-2^{-1} \varepsilon_{3}{ }^{2} \geqslant m_{10}>0$ (which is always possible), we can obtain, on the ellipsoid $C(R, 0)$, the estimate (3.2) sought. This proves Lemma 5. Further arguments needed to prove the theorem follow those given in $/ 2 /$.

Note, If e.g. we choose the constants $\varepsilon_{1}{ }^{2}, \varepsilon_{2}{ }^{2}, a, \beta$, corresponding to the inequalities $\alpha<4^{1} \varepsilon, \varepsilon^{1}<\varepsilon_{1}{ }^{2}<4 \varepsilon^{1}, \beta<8^{-1} \varepsilon^{2}, \varepsilon_{2}{ }^{2}<\varepsilon, \alpha \varepsilon=2 \beta$
then all restrictions imposed on them will hold.

REFERENCES

1. MOROZOV, N. F. Investigation of nonlinear oscillations of thin plates with damping. Differentsial'nye uravneniia, Vol.3, No.4, 1967.
2. VOROVICH, I. I. and SOLOP, S. A. On the existence of periodic solutions in the nonlinear theory of oscillations of shallow shells, taking damping into account. PMM Vol.40, No.4, 1976.
3. REISSNER, E. On axisymmetrical deformation of thin shells of revolution. Proc. Sympos. Appl. Math., Vol.3, 1950.
4. IUDIN, A. S. On certain nonlinear equations of axisymmetric deformation of shells of revolution. Izv. Sev. -Kavkazsk. nauchn. tsentra vysshei shkoly. Ser. estestv. nauk, No. $4,1973$.
5. VOROVICH, I. I. On certain direct methods in the nonlinear theory of oscillation of shallow shells. Izv. Akad. Nauk SSSR, Ser. matem. Vol.21, No.6, 1957.
6. PLISS, V. A. Nonlocal Problems of the Theory of Oscillations. Moscow - Leningrad, "Nauka", 1964.
7. LADYZHENSKAIA, O. A., SOLONNIKOV, V. A. and URAL'TSEVA, P. A. Linear and Quasilinear Parabolic Type Equations. Moscow, "Nauka", 1967.

[^0]: *Prikl.Matem. Mekhan., 44,No.1,188-192,1980

